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1 Lambda Calculus

Lambda Calculus is a formal language created by Alonzo Church in 1936. It is equivalent
to other computational models such as Turing’s machine and recursive functions. For a
long time it had only a theoretical interest, then with the formulation of the Curry-Howard
isomorphism and Levy-optimality its computational side clearly surfaced.

Definition 1. Let V = {xi|i ∈ N} be a denumerable set of variables. We define the set of λ-terms as
the set L of finite sequences of symbols “(”, “)”, “λ” and variables xi obtained applying the following
rules a finite number of times

• if x ∈ V then x ∈ L;

• if t, u ∈ L then (u)t ∈ L;

• if x ∈ V, u ∈ L then λx u ∈ L.

Definition 2 (Free variables). We define the set of free occurrences of a variable x in t:

• if t = y, x occurs free in t iff x = y;

• if t = (u)v, the free occurrences of x are those in u and v;

• if t = λy u then the free occurrences of x are those in u if x 6= y and none otherwise.

We denote FV (t) the set of free variables of t, i.e. those variables that have at least one free occur-
rence in t. Given a set of terms {t1, . . . , tk} we define FV ({t1, . . . , tk}) := ∪iFV (ti).

Definition 3 (Bound variables). We define BV (t), the set of bound variables of t:

• if t = x, BV (t) = ∅;

• if t = (u)v, BV (t) = BV (u) ∪BV (v);

• if t = λx u, BV (t) = BV (u) ∪ {x}.

A term containing only bound variables is said to be closed (and open otherwise).

1.1 α-equivalence

If two terms differ only in the name of the bound variables (such as λx x and λy y) they
actually represent the same thing. So α-equivalence is introduced to identify such terms.
Let u, t1, . . . , tk ∈ L and x1, . . . , xk ∈ V s.t. ∀1 ≤ i 6= j ≤ k : xi 6= xj ; we define
u〈t1/x1, . . . , tk/xk〉 as the result of the substitution of ti in place of every free occurrence
of xi in u (1 ≤ i ≤ k). We define it by induction on u according to the following rules:

• u = x ∈ V ⇒ u〈t1/x1, . . . , tk/xk〉 =


ti

if exists i s.t. x = xi,
i ∈ {1, . . . , k}

x
if for all i x 6= xi,
i ∈ {1, . . . , k};

• u = (w)v ⇒ u〈t1/x1, . . . , tk/xk〉 =
(w〈t1/x1, . . . , tk/xk〉)v〈t1/x1, . . . , tk/xk〉;
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• u = λx v ⇒ u〈t1/x1, . . . , tk/xk〉 =
λx v〈t1/x1, . . . , ti−1/xi−1, ti+1/xi+1, . . . , tk/xk〉

if exists i s.t. x = xi,
i ∈ {1, . . . , k}

λx v〈t1/x1, . . . , tk/xk〉
if for all i x 6= xi,
i ∈ {1, . . . , k}.

We call such substitution “simple substitution”, to tell it apart from the on we define later.
The order in which the substitutions are executed is irrelevant.

Definition 4 (α-equivalence). We define on the set L of λ-terms the following equivalence relation
≡:

• if u ∈ V then u ≡ u′ ⇔ u = u′;

• if u = (w)v then u ≡ u′ ⇔ u′ = (w′)v′, v ≡ v′, w ≡ w′;

• if u = λxv then u ≡ u′ ⇔ u′ = λx′ v′, with v〈y/x〉 ≡ v′〈y/x′〉 for each y ∈ V except a finite
number.

Definition 5. Let u, t1, . . . , tk ∈ Λ, x1, . . . , xk ∈ V . We define the term u[t1/x1, . . . , tk/xk] :=
u′〈t1/x1, . . . , tk/xk〉 where u′ ≡ u is such that BV (u′) ∩ FV ({t1, . . . , tk}) = ∅.

1.2 β-equivalence

Turing’s machines operates with a transitions table that defines how to go from one con-
figuration to the next, finally reaching the result. Lambda calculus has a simple transition
mechanism called β-reduction. A term t = (λx u)v (an abstraction followed by an applica-
tion) is called a redex: a β-reduction step consists in replacing the term with t′ = u[v/x].

Definition 6. A term of the form (λx u)t is called a redex, u[t/x] is called its contractum. We
define a binary relation β0 on Λ; we have tβ0t

′ if t′ is obtained by contracting a redex (or by a
β-reduction1) in t.

• if t ∈ V , tβ0t
′ is false for any t′;

• if t = λx u, then tβ0t
′ iff t′ = λx u′, with uβ0u

′;

• if t = (u)v, then tβ0t
′ iff

– either t′ = (u)v′ (resp. t′ = (u′)v) with vβ0v
′ (resp. uβ0u

′),

– or u = λx w and t′ = w[v/x].

Definition 7. The transitive closure of β0 is denoted β:

tβt′ ⇔ ∃n ∈ N, t = t0, t1, . . . , tn−1, tn = t′ ∈ Λ,

where tiβ0ti+1 for all i s.t. 0 ≤ i < n.

1Contracting a single redex is often called β-conversion, while contracting any number of redexes is called β-
reduction.
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With each step, we try to simplify a term into an explicit form: a term that contains no
redexes and can no longer be simpified (such a term is called normal). Not every term has a
normal form; there are even normalizable terms such that a particular reduction chain can go
on forever without reaching the normal form (these terms are normalizable but not strongly
normalizable). However, we do know that if the normal form exists it is unique.

1.2.1 Confluence: Church-Rosser

In general a term contains several redexes, so the computation is not deterministic. How-
ever, the calculus is confluent: if two terms u and w are obtained from t through a series of
β-reductions, then there exists a term w such that both u and v can be reduced to it.

Theorem 1 (Church-Rosser). The β-conversion has the Church-Rosser property.

Simplifying a single redex is called contraction (t→β0 t
′), while the simplification of any

number of redexes is called reduction (t = t0 →β0 t1 →β0 . . . →β0 tn−1 →β0 tn = t′ can be
written equivalently t→β t

′ if we do not need to specify all the intermediate steps).

Definition 8. The β-equivalence (denoted by'β) is defined as the least equivalence relation which
contains β0 (or equivalently β, its transitive closure).

t 'β t′ ⇔ exists n ∈ N, (t = t0), t1, . . . , tn−1, (tn = t′),
such that tiβ0ti+1 or ti+1β0ti∀0 ≤ i < n.

1.3 Representation of recursive functions

As we said, lambda calculus is a formal language: there are no functions or integers, not
as we know them. Still, there are terms that can represent — in a precise sense — a given
function. Similarly, integers (as well as booleans and other data types) can be encoded as
particular terms which have the “right” operational behaviour.

1.3.1 Church integers

Let (t)ku denote (t) . . . (t)︸ ︷︷ ︸
k

u if k > 0 and u if k = 0. We define the term k = λf λx (f)kx; k is

called the integer k of λ-calculus (or Church integer). The term represents a generic function
f being applied k times on some term x.
Note that (f)a(f)b = (f)a+b, where f is a generic function and a, b are (non-negative) inte-
gers.

1.3.2 Function representation

Definition 9. Let ϕ : Nn → N be a partial function. Given the λ-term Φ, we say Φ represent (resp.
strongly represent) ϕ if, for any k1, . . . , kn ∈ N:

• if ϕ(k1, . . . , kn) is undefined, then (Φ)k1 . . . kn is not normalizable (resp. not solvable);

• if ϕ(k1, . . . , kn) = k, then (Φ)k1 . . . kn is β-equivalent to k.
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If ϕ is a total function, the two notions coincide.

Theorem 2. Every recursive partial function from Nk to N is (strongly) representable by a term of
λ-calculus.

2 Optimal reduction

In spite of the progress made, for years functional languages had only limited use because
of the difficulty of designing an efficient implementation. Lévy defined optimality as avoid-
ing duplication of work (i.e., avoiding the duplication of redexes), but did not provide any
practical way to do optimal reductions. Ten years later Lamping designed the first optimal
algorithm that avoided duplication using an explicit mechanism for sharing of subexpres-
sions.

2.1 Reduction strategies

A redex is to the left of another redex if its lambda abstractor appears further to the left. Now
let us consider two possible reduction strategies, corresponding to opposite viewpoints:

i. leftmost innermost — the leftmost redex not containing any other redex is contracted;

ii. leftmost outermost — the leftmost redex not contained in any other redex is contracted.

In the first case, the arguments are evaluated before the function, while in the latter the
order is reversed. Which strategies permits to reach the normal form in a minimal number
of β-conversions?

2.2 Sharing of expressions

A good reduction strategy should be able to avoid duplication any redexes, even a virtual
redex (i.e., a sub-term which is not yet redex, but that will be after a substitution). In general
this is not possible because there are terms for which any reduction strategy duplicate some
redex (in general it is not even possible to predict which strategy causes the least duplication
of work).

λ-terms have also a graphical representation. It is useful to study (virtual) redexes and
is the first step for leaving the world of usual λ-terms and start thinking in term of graphs
and paths.

Definition 10. Given a λ-term t, we define its abstract syntax tree T (t) as:

x
(a) if t = x ∈ V

@
xxx FFF

T (u) T (v)
(b) if t = (u)v, u, v ∈ Λ

λx

T (w)
(c) if t = λx w, x ∈ V, w ∈ Λ
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2.2.1 Wadsworth’s algorithm

In his PhD [Wad71], Wadsworth described a graph reduction technique2 that used directed
acyclic graphs similar to syntax trees to represent λ-terms. The problem of sharing is ad-
dressed by the use of pointers: identical subexpression are represented with a single piece
of graph, so the reduction of (λxM)N requires to link N to every occurrence of x in M .3

Example 1. Let t = (λx (x)x)(λx y)I and t′ = (y)y its normal form. The reduction is shown in
Figure 1: notice that the initial graph is a normal syntax tree, while the final graph is not.

@

���������

@@@@@@@@@

λx @
����

7777

@

�����
::::: λx I

x x @

�����
<<<<

x y

@

-- qq@
����

7777

λx I

@

�����
<<<<

x y

@

-- qq@
����

7777

I y

@

.. ppy

Figure 1: Reduction of (λx x)(λx y)I .

2.3 Optimality

Lévy generalized the concept of reduction to include parallel reductions (i.e., in which sev-
eral redexes are contracted simultaneously). Lévy showed with an example [Lév78, pag.
199] that in general parallel reductions are essential to avoid duplications. Since parallel
reductions are the basis of optimal reduction, he said we can not assume that each simul-
taneous reduction has the same cost. Although he did not know of a structure better than
Wadsworth’s to back his reasonings, he suggested representing several redexes with the
same object (this is the case in Lamping’s sharing graphs).

2.4 Lamping’s algorithm

As an introduction to the actual algorithm, we present here the main facts on sharing graphs
and the reduction rules of a simplified version. Finally we also briefly discuss the full algo-
rithm.

2Cfr. also [Lév78, pp. 195–198] and [AG98, pp. 20–22].
3This way, any simplification insideN corresponds to multiple simplifications to each copy in the corresponding

λ-term.
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2.4.1 Sharing graphs

Lamping technique employs an explicit node for sharing, called fan. The node has three
ports, one principal port (or main port) and two auxiliary ports (or secondary ports) denoted ◦
and ∗: the idea is that when a path starting from the root of the term meets a fan it enters
from the principal port and exists by one of the secondary ports, each corresponding to a
different copy of a shared sub-term. Contrarily to Wadsworth’s case, sharing of expressions
with the same “structure” but different sub-expressions (such as ((M)N)(M)N ′) is allowed
(a fact essential for optimal sharing): this is obtained by the use of two paired fans, the
first (called fan-in) is used to denote sharing, the second (called fan-out) is used to denote
unsharing. Informally, a fan-in (resp. fan-out) marks the start (resp. the end) of a shared
sub-expression.

@

∗∇◦

@

�����
CCCCC

M ∗4◦
{{{{{

?????

N N ′

Figure 2: The sharing graph of ((M)N)(M)N ′.

@
@@@

��~~~ λ

OO

��� >>> ∗∇◦
HHHH vvvv

��

Figure 3: Principal ports.

a a

@

~~~ ???

λ

���
d

−→
d

b c b c

Figure 4: β-rule
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a
????? b

�����

∗∇◦

λ

�����
>>>>>

c d

a b

λ
FFFFFF λ

xxxxxx

∗∇◦ ∗∇◦

c d
(a) Fan-λ interaction

a

@
xxx 99

∗4◦
{{{ FFF d

b c

a

∗4◦
}}} HHHH

@

					
LLLLLLLL @

������

b c ∗∇◦

d
(b) Fan-@ interaction

a
????? b

�����

∗∇◦

∗4◦

c

�����
d

=====

a b

c d
(c) Fan-fan interaction (1).

a
????? b

�����

∗∇◦

∗4◦

c

�����
d

=====

a b

∗4◦
EEEEE ∗4◦

yyyyy

∗∇◦ ∗∇◦

c d
(d) Fan-fan interaction (2).

Figure 5: Fan-interaction rules (the rewriting is from left to right).

Reduction rules Another difference with Wadsworth’s graphs is that each variable is linked
to the corresponding λ node. The fan-interaction rules presented here are optimal (in the
sense that they do not duplicate redexes of the same family), and they are interaction rules
(meaning two nodes can interact only if they are linked by their principal ports).

2.4.2 Full Algorithm

We have omitted how to determine which rule should be used when two fans meet. This is
the problem of pairing fans (if two fans match the fans cancel each other out, if they do not
the fans duplicate each other). To solve this problem it is necessary to introduce two types
of control nodes for managing levels of sharing.

Control nodes The control nodes in Figure 6 are called croissant and bracket. The role of
a croissant (resp. bracket) node is to open (resp. temporarily close) a level.

n_ n

Figure 6: Control nodes.
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Contexts A context is a stacks of levels: it is used to describe paths in a graph keeping
track of the auxiliary ports (∗ or ◦) traveled at each fan (it is possible to describe the syntax
tree of a lambda by the sets of its maximal paths — those starting at the root and ending
at the nodes of the tree — similarly to how a proof-net may be described by its execution).
Since a fan may be crossed multiple times, the information must be organized properly.
We may plug a context into the hole [·]

An[C] = 〈〈. . . 〈C, an−1〉, . . . , a1〉, a0〉

where C is any context (i.e., An[C] = A iff C is the subcontext of A at level n). With the
notations we introduced, Figure 7 shows how a context is modified upon entering a fan
from an auxiliary door. If a croissant (resp. bracket) is traversed, contexts are modified as

An[〈b,a〉]****

◦ :: ∗
n��
An[〈b,◦·a〉]

An[〈b,a〉]����

◦ :: ∗
n��
An[〈b,∗·a〉]

Figure 7: Context transformation (1).

in Figure 8 When a croissant is met a new level is opened, so all existing information is

An[a]

n_
An[〈a,�〉]

An[〈〈b,a〉,c〉]
n

An[〈b,〈a,c〉〉]

Figure 8: Context transformation (2).

pushed at a higher level and the level n is initialized to the empty list �. When a bracket
is traversed, it is necessary to store all branching information recorded for level n in such a
way to retrieve it later when the matching bracket is found along the path. There is no need
to record any information when an application (resp. abstraction) node is met.

A

λn

A

A

@n

A

�����

A

@n

A
/////

Figure 9: Context transformation (3).

Correctness

Definition 11. A proper path in a sharing graph G is a path such that:
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1. every edge of the path is labeled with a context;

2. consecutive pairs of edges satisfy one of the constraints in Figures 7, 8, 9.

3. the path does not contain bounces.

The concept of proper path is the equivalent of straight path in Geometry of Interaction.
It leads to the following result:

Theorem 3. For any sharing graph reduction [M ]→ G, there exists a corresponding λ-term reduc-
tion M →β N such that G matches N .

The previous result is described in Figure 10.

M
β-reduction //

[·]

��

N

[M ]
s.g.-reduction // G

read-back

OO

Figure 10: Correctness of the sharing graph reduction.

3 Linear Logic

In Intuitionistic Logic proofs may not have several conclusions and we lose the symmetry
of the Classical Logic sequent. Linear Logic is an answer to both these problem: it has the
symmetry of Classical Logic and the constructiveness of Intuitionistic Logic.
The word linear means that each formula may only be used once. Unless that formula has
the form ?A or !A, where ? and ! denote two special unary connectives called exponentials.

(!A)⊥ =?A⊥ (?A)⊥ =!A⊥.

Here is how structural rules become with the introduction of exponentials.
`?Γ, A

!`?Γ, !A
` Γ

W?` Γ, ?A
` Γ, ?A, ?A

C?` Γ, ?A
` Γ, A

D?` Γ, ?A

3.1 Proof-nets

As previously stated, in Linear Logic it is possible to have proofs with more than one con-
clusion. It is possible to represent them graphically (analogously to intuitionistic proofs
in natural deduction, but without the one-conclusion-only limitation) with special graphs
called proof-nets. We examine them in the framework of MLL and MELL (resp. multiplica-
tive and multiplicative-exponential linear logic).
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3.1.1 MLL

Definition 12 (Symbol). A symbol (or link4) is a triple (l, a, p) where l is the label of the symbol,
a is a finite sequence of auxiliary ports or premises and p is a finite sequence of principal ports or
conclusions. The number of premises (resp. conclusions) is the arity (resp. co-arity) of the symbol.
Multiplicative symbols are axiom, cut, tensor and par and they are shown in Figures 11(a) and
11(b) along with their labels, arity and co-arity.

� �

A A⊥

A A⊥

� �

(a) Identity group: Ax/Cut

A B

A⊗B

JJJJ tttt
A B

A℘B

GGGG wwww

(b) Logical group: ⊗/℘

Figure 11: MLL rules

3.1.2 MELL

To extend MLL by including the exponential fragment of linear logic, it is necessary to in-
troduce the concept of proof-box. A proof-box (or simply box) contains a complete proof-net
and is employed when exponential links are involved, since it marks a subnet that may
be erased or duplicated. Since boxes introduce sequentiality (in contrast with the parallel
nature of proof-nets), one must try to use them as little as possible: although avoiding the
! case (promotion link) is not possible [Gir87, sec 2.6], a reformulation of proof-nets may
allow some improvements of the syntax.

Definition 13. A MELL net N is said to be correct if

• every box contains a correct sub-net, and

• every switch graph N s derived from N is acyclic and connected.

3.1.3 Cut-elimination

It is possible to define rules for proof-normalization directly in the framework of proof-
nets. A step of normalization usually consists of “rewiring”, unless proof-box are involved.
Encoding terms as proof-nets, cut-elimination can also be applied to lambda calculus.
Cut-elimination is only the trace of a deeper procedure: we need an operational semantics of
linear logic to model execution at a lower level, simple enough to be mechanized someway
(on an actual, concrete machine). This semantics was discovered by Girard [Gir89b] [Gir89a]
and we explain it in the next section (along with some implementation techniques).

4A link is a node, not an edge.
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4 Geometry of Interaction

We are interested in some way to obtain the normal form of a term rather than implementing
β-reduction directly. λ-terms may be represented as special graphs called directed virtual
nets. The normal form can be computed considering maximal paths starting from the root
of the graph whose weight is not zero; the paths whose weight is non-zero are said to be
regular. On the other hand, the paths that survive reduction are said to be persistent. Those
two notions have been proved to be equivalent [DR95], so we actually compute the weight
of the paths by performing reductions.5 Indeed, Geometry of Interaction is essentially an
algebraic tool for computing the weights of persistent paths. Its name reflects the fact that
it uses geometric (or algebraic) tools to deal with (logical) computations: in other words, it
offers a logical foundation for graph-rewriting techniques.
We start within a proof-nets framework, but then we move onto the more general directed
virtual nets and we finally proceed discussing the techniques to implement.

Definition 14 (Straight path). A path γ = t1 . . . tn is said to be straight if it is:

non-twisting if the goal of ti and the source of ti+1 are two premise ports of a symbol X then X is
a cut symbol (changing direction is only allowed at Cut or Ax symbols, otherwise one always
moves upward or always downward);

non-bouncing if for any 1 ≤ i < n we have ti 6= t∗i+1 (two consecutive edge-traversals can’t be
identical except for the direction they’re traversed).

Proof nets can be labeled with elements from Girard’s algebra L∗ (with morphism !(·)
and inversion (·)∗), which is characterized by the following equations.

x∗y = δxy, x, y = p, q, wi, (1)
!(u)wi = wi!ei(u), (2)

Orienting these equation from left to right, we get a rewriting system. An element of L∗

can be written in the form a∗b (known as stable form) iff it is not zero. A proof-net N is
characterized by the following invariant, called Girard’s Execution Formula, where the sum is
extended to all maximal paths and Π• and σ are two matrices (whose entries are operators
on the Hilbert Space l2) representing N .

Definition 15.

Ex(Π•, σ) = (1− σ2)

(
Π•

∞∑
k=0

(σΠ•)k
)

(1− σ2) (3)

To compute the normal form of a proof-net one can calculate its execution, which is the
sum of all regular maximal straight paths (or equivalently of all maximal straight paths that
survive reduction).
We already said that a path is regular iff it is persistent, so if we consider regular path we
can work directly on the weighted graphs (called virtual nets) which can be obtained from a
proof-net or a lambda-term. The concepts of (straight) paths and execution are still the key.

5There are even more equivalent notions, cfr. [ALDR94] for a recap.
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4.1 Virtual Reduction

Virtual Reduction is a local graph rewriting introduced in [DR93] in which we compose two
consecutive edges in the resulting path (hence shortening the path). A VR step is described
in the following figure, where [x] = 1− xx∗ is called the filter of x.

© x // © ©
yoo  ©

[y]x //

y∗x

;;© ©
[x]yoo

Figure 12: A step of VR.

Definition 16 (Straight path). A path is straight if it contains no subpath of the form φφ∗.

Definition 17. A weighted directed graph is said to be split if any three coincident edges φ1, φ2, φ3

are such that 〈φ1〉〈φ2〉〈φ3〉 = 0; it is said to be square-free if for any straight path φ, φφ = 0.

Informally, splitness prevents any interference between compositions while square-freedom
prevents the existence of self-recomposable cycles6.

Definition 18. A weighted directed graph is a virtual net if it is split and square-free.

If V is a virtual net and V ′ is obtained by V with a step of VR it is still a virtual net and
Ex(V ) = Ex(V ′). VR can be applied to lambda calculus encoding lambda terms as virtual
nets. Since by definition VR creates weight of increasing order (such as [x[y]], z[x[y]] and so
on), Directed Virtual Reduction is introduced.

4.2 Directed Virtual Reduction

Notation. Set [b1, . . . , bn] := 1−b1b∗1−· · ·−bnb∗n. The filter is an idempotent iff 〈bibi∗〉 〈bjbj∗〉 = 0
for 1 ≤ i 6= j ≤ n (i.e. the bi’s are pairwise orthogonal). Let α = [b1, . . . , bn]a: we denote α+ the
weight without filter, that is a.

Definition 19. A directed virtual net V is an acyclic7 virtual net such that for each edge α:

A. α = [b1, . . . , bn]a, where a, b1, . . . , bn ∈ L∗ are positive.

B. for any i 6= j and β1, β2 counter-edges of α along τ1, τ2:

〈bi〉〈bj〉 = 0 0R(α; bi; bj)

〈bi〉〈τ∗β+〉 = 0 1R(α; bi; τ∗β)

〈τ∗1 β+
1 〉〈τ∗2 β

+
2 〉 = 0 2R(α; τ∗1 β1; τ∗2 β2)

Contrarily to VR, in directed virtual reduction the weight of the composition (in stable
form) is written on two new edges (one for the positive part, the other for the negative part).
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©
[b1,...,bn]a// © ©

[a1,...,am]boo  ©
[b1,...,bn,b]a // © ©

[a1,...,am,a]boo

©
b′

ggOOOOOOOOOOOOOO a′

77oooooooooooooo

Figure 13: A step of DVR.

The directed virtual reduction of a directed virtual nets yields a directed virtual nets. DVR
is a particular case of VR, so it preserves the execution of the net. Now all we need is a
practical strategy to implement DVR. We show two of them.

4.3 Combustion

Let’s call full directed virtual net a directed virtual net in which each edge is either ghost,
i.e. has no counter-edge, or is weighted by a positive monomial (typically, a proof-net/a
sharing graph is translated into a full directed virtual net). From now on the valence of a
node is the number of non ghost edges exiting this node. Note that if a node has valence
zero, then all his outgoing edges are ghost thus the node will never receive any residuals
from them.

Proposition 1. The combustion strategy chooses a node of valence 0 and performs all the possible
compositions. If R′ is obtained from R by the combustion strategy and if R is full then so is R′.

The idea is that once a node of the net receives all edges, we can perform all steps of
DVR in one macro-step (in particular, there is no more need to keep filters).

4.4 Half-Combustion

We now define the Half Combustion Strategy (HC) that like combustion does not require
to keep filters and, in addition, allows the composition to be performed even on nodes
having valence greater than zero, thus allowing high degree of parallelism. HC relies on
the following notion of semifull directed virtual net which is a generalization of the notion
of full directed virtual net.

Definition 20. Let us call semifull directed virtual net a directed virtual net in which each edge
either is weighted by a positive monomial (i.e. its weight has no filter) or all its coincident counter-
edges are weighted by a positive monomial (i.e. it can be composed exclusively with edges having a
positive weight).

Definition 21. Given a composable edge α with positive weight in a semifull directed virtual net R,
we have to consider two cases:

6Cfr. [Pin01, p. 118]
7No directed cycle.
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1. if α has no non-positive coincident counter-edge and (at least) a positive one β, then the half
combustion strategy (HC) performs the composition of β with α and possibly with every non-
positive edge composable with β;

2. if the set {β1, . . . , βn} of non-positive edges composable with α is non-empty then HC performs
all the possible compositions of α with the βis.

Remark 1. HC can be performed discarding the filters. Let us explain how. A mark is associated to
each edge, incoming or combusted: when an edge is created, it is marked as incoming; after it has
been composed with every other coincident edge, it is marked as combusted. If two edges belong to
the set of the combusted edges of a node, then they are never composable. Note that an edge may have
positive weight and be combusted (if it is not composable with any coincident edge).

5 Implementation on GPU

PELCR is a software for lambda calculus reductions composed of several modules. One of
these, called symbolic.c, is responsible for the compositions of weights of L∗ and related
tasks. We gave a preliminary implementation in order to execute PELCR using parallelism
provided by GPUs, that we shortly report below.

5.1 GPGPU

General Purpose GPUs support general-purpose high-level languages, so the programmer
does not have to be concerned with hardware details. This devices are suitable for vectorial
task, i.e., all programs which benefits from large-scale data-parallelism can be efficiently
executed on GPUs, as explained in [NVI09, Section 1.1]:

[. . . ]the GPU is specialized for compute-intensive, highly parallel computation
— exactly what graphics rendering is about — and therefore designed such that
more transistors are devoted to data processing rather than data caching and
flow control. More specifically, the GPU is especially well-suited to address
problems that can be expressed as data-parallel computations — the same pro-
gram is executed on many data elements in parallel — with high arithmetic in-
tensity — the ratio of arithmetic operations to memory operations. Because the
same program is executed for each data element, there is a lower requirement
for sophisticated flow control; and because it is executed on many data elements
and has high arithmetic intensity, the memory access latency can be hidden with
calculations instead of big data caches.

5.1.1 CUDA

C for CUDA extends C by allowing the programmer to write C functions called kernels that
can be executedN times in parallel byN CUDA threads. A kernel is defined by the keyword
__global__, that denotes a function called by the host and executed on the device.

The threads that runs on the GPU are grouped in blocks that are themselves grouped
in a grid. Blocks can be 1D, 2D or 3D, and they all have the same sizes, while the grid
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can only be 1D or 2D. Threads within a block can be synchronized calling the function
__syncthreads(), which acts as a barrier at which all threads must wait before any can
proceed (global synchronization can be obtained using different kernels). Block and grid
size must be specified at kernel launch. All threads in a block reside on the same processor
and they all share a common memory called shared memory designed for fast read-and-write
access. Besides shared memory, a thread has access to its own local memory, to global memory
(which is shared by all threads, but not very fast) and a constant memory (a special read-only
memory that is accessible to all threads and is faster than global memory). There is also a
special texture memory for graphics-specific purposes

A CUDA GPU consists of an array of multi-threaded Streaming Multiprocessors (SMs).
When a block terminates, new blocks are automatically loaded; the number of blocks can
greatly exceed the number of blocks that can be executed concurrently by all processor; the
number of threads in a single block can also be greater than the maximum number of con-
current threads a multiprocessor can handle. This allows the device to better schedule the
various blocks and threads. A Multiprocessor contains eight Scalar Processor (SP) cores, two
special functions units for trascendentals, a multi-threaded instruction unit, and an on-chip
memory. The execution is scheduled in hardware with zero overhead and synchronizations
is done with a single hardware instruction, so very fine-grained parallelism is possible.

6 Implementation

First we describe a new coding of the weights, then we give a high-level description of the
kernel showing how DVR with HC can be implemented.

6.1 Weight representation

The idea is to use unsigned int to represent integers and symbols (’!’, ’w’, ’p’, ’q’):
integers will be represented in the obvious way (more or less), while symbols will be repre-
sented using a symbol code.

Example 2. Let us consider X = w(1, 2)!2(qpp!(p)), how is it encoded? First we separate the
symbolic and the numeric parts:

"w(1,2)!5qpp!1p" 7→ ("w!qpp!p", [(1,2)][5][1]) = (Xs, Xn)

Then we encode the symbolic part with the following binary symbolic code:

cs :

ai cs(ai)
! 00
w 01
p 10
q 11

(4)

c+s (w!qpp!p) = [01001110100010000000000000000000]
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As for the numeric part, we use a special encoding to memorize the index and the lift of an exponential
into the same unsigned, while the level of a bang is encoded normally:

cn :

ai cw(ai)
(i, l) [i|l]
ai c!(ai)
k k

(5)

c+n ([(1, 2)][5][1]) = [1|2][5][1] =
[00000000000000010000000000000010]
[00000000000000000000000000000101]
[00000000000000000000000000000001].

X can be finally encoded as {c+s (Xs), c+n (Xn)}.

6.2 Kernel

To implement DVR with half-combustion, we consider the strategy we describe below. First,
let us make a few considerations:

1. since the kernel grid is composed of blocks of the same size, there should be some ag-
gregation mechanism analogous to the one already used for the application messages
in PELCR (to avoid wasting resources on the GPU);

2. the sizes of different (semi)nodes might differ a lot, so there should be several kernel
invocation (each call, perhaps on different streams, should process the nodes which
have a number of combusted edges inferior to a certain threshold);

3. since only one CPU process can execute a kernel on the GPU at one time, we should
determine an appropriate policy (the starting process controls the GPU throughout the
execution; or when the kernel terminates, the control of the GPU passes to the process
with the maximum number of resident nodes; or the GPU is used periodically by all
process; . . . );

4. the execution should be organized in such a way the various weights stay on the GPU
for as long as possible (until the read-back needs to be performed, if possible);

5. the (format of the) output of a kernel call should be as close as possible to the (format
of the) input of a future invocation, to minimize additional work (the aggregation
strategy needs to accumulate the weights of incoming edges as future input).

Execution strategy Each threads block corresponds to a node: each thread in a block cal-
culates the product of a left incoming edge and a right combusted edge, then adds the left
incoming edge to the set of left combusted edges and synchronizes with the threads in the
block. Then that thread in a block calculates the product of a right incoming edge and a left
combusted edge (this includes edges just created), then adds the right incoming edge to the
set of right combusted edges.

16



References

[AG98] Andrea Asperti and Stefano Guerrini. The Optimal Implementation of Functional
Programming Languages, volume 45 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1998.

[ALDR94] Andrea Asperti, Cosimo Laneve, Vincent Danos, and Laurent Regnier. Paths in
the lambda-calculus — three years of communications without understanding,
1994.

[DR93] Vincent Danos and Laurent Regnier. Local and asynchronous beta-reduction
(an analysis of girard’s execution formula). In Proceedings of the Eighth Annual
IEEE Symposium on Logic in Computer Science (LICS 1993), pages 296–306. IEEE
Computer Society Press, June 1993.

[DR95] Vincent Danos and Laurent Regnier. Proof-nets and Hilbert space. In J.-Y. Gi-
rard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, pages 307–328.
Cambridge University Press, 1995.

[Gir87] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[Gir89a] Jean-Yves Girard. Geometry of interaction. I. Interpretation of system F. In Logic
Colloquium ’88 (Padova, 1988), volume 127 of Stud. Logic Found. Math., pages 221–
260. North-Holland, Amsterdam, 1989.

[Gir89b] Jean-Yves Girard. Towards a geometry of interaction. In Categories in computer
science and logic (Boulder, CO, 1987), volume 92 of Contemp. Math., pages 69–108.
Amer. Math. Soc., Providence, RI, 1989.
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